Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Mol Plant Pathol ; 23(5): 733-748, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35239989

RESUMO

Brassica napus (oilseed rape, canola) seedling resistance to Leptosphaeria maculans, the causal agent of blackleg (stem canker) disease, follows a gene-for-gene relationship. The avirulence genes AvrLmS and AvrLep2 were described to be perceived by the resistance genes RlmS and LepR2, respectively, present in B. napus 'Surpass 400'. Here we report cloning of AvrLmS and AvrLep2 using two independent methods. AvrLmS was cloned using combined in vitro crossing between avirulent and virulent isolates with sequencing of DNA bulks from avirulent or virulent progeny (bulked segregant sequencing). AvrLep2 was cloned using a biparental cross of avirulent and virulent L. maculans isolates and a classical map-based cloning approach. Taking these two approaches independently, we found that AvrLmS and AvrLep2 are the same gene. Complementation of virulent isolates with this gene confirmed its role in inducing resistance on Surpass 400, Topas-LepR2, and an RlmS-line. The gene, renamed AvrLmS-Lep2, encodes a small cysteine-rich protein of unknown function with an N-terminal secretory signal peptide, which is a common feature of the majority of effectors from extracellular fungal plant pathogens. The AvrLmS-Lep2/LepR2 interaction phenotype was found to vary from a typical hypersensitive response through intermediate resistance sometimes towards susceptibility, depending on the inoculation conditions. AvrLmS-Lep2 was nevertheless sufficient to significantly slow the systemic growth of the pathogen and reduce the stem lesion size on plant genotypes with LepR2, indicating the potential efficiency of this resistance to control the disease in the field.


Assuntos
Ascomicetos , Brassica napus , Ascomicetos/genética , Brassica napus/genética , Brassica napus/microbiologia , Clonagem Molecular , Leptosphaeria , Doenças das Plantas/microbiologia
3.
Plant J ; 104(4): 892-900, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32794614

RESUMO

In plants, race-specific defence against microbial pathogens is facilitated by resistance (R) genes which correspond to specific pathogen avirulence genes. This study reports the cloning of a blackleg R gene from Brassica napus (canola), Rlm9, which encodes a wall-associated kinase-like (WAKL) protein, a newly discovered class of race-specific plant RLK resistance genes. Rlm9 provides race-specific resistance against isolates of Leptosphaeria maculans carrying the corresponding avirulence gene AvrLm5-9, representing only the second WAKL-type R gene described to date. The Rlm9 protein is predicted to be cell membrane-bound and while not conclusive, our work did not indicate direct interaction with AvrLm5-9. Rlm9 forms part of a distinct evolutionary family of RLK proteins in B. napus, and while little is yet known about WAKL function, the Brassica-Leptosphaeria pathosystem may prove to be a model system by which the mechanism of fungal avirulence protein recognition by WAKL-type R genes can be determined.


Assuntos
Brassica napus/genética , Resistência à Doença/genética , Leptosphaeria/patogenicidade , Doenças das Plantas/imunologia , Proteínas Quinases/metabolismo , Brassica napus/imunologia , Brassica napus/microbiologia , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Quinases/genética , Especificidade da Espécie , Virulência
4.
Sci Rep ; 9(1): 6947, 2019 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-31061421

RESUMO

While our understanding of the genetics underlying the Brassica-Leptosphaeria pathosystem has advanced greatly in the last decade, differences in molecular responses due to interaction between resistance genes and host genetic background has not been studied. We applied RNAseq technology to monitor the transcriptome profiles of Brassica napus (Bn) lines carrying one of four blackleg R genes (Rlm2, Rlm3, LepR1 & LepR2) in Topas or Westar background, during the early stages of infection by a Leptosphaeria maculans (Lm) isolate carrying the corresponding Avr genes. We observed upregulation of host genes involved in hormone signalling, cell wall thickening, response to chitin and glucosinolate production in all R gene lines at 3 day after inoculation (dai) albeit having higher level of expression in LepR1 and Rlm2 than in Rlm3 and LepR2 lines. Bn-SOBIR1 (Suppressor Of BIR1-1), a receptor like kinase (RLK) that forms complex receptor like proteins (RLPs) was highly expressed in LepR1 and Rlm2 at 3 dai. In contrast Bn-SOBIR1 induction was low in Rlm3 line, which could indicate that Rlm3 may function independent of SOBIR1. Expression of Salicylic acid (SA) related defense was enhanced in LepR1 and Rlm2 at 3 dai. In contrast to SA, expression of Bn genes with homology to PDF1.2, a jasmonic acid (JA) pathway marker, were increased in all Rlm and LepR lines at 6 and 9 dai. Effect of host genetic background on induction of defense, was determined by comparison of LepR1 and LepR2 in Topas vs Westar genotype (i.e. T-LepR1 vs W-LepR1 and T-LepR2 vs W-LepR2). In both cases (regardless of R gene) overall number of defense related genes at the earliest time point (3 dai) was higher in Tops compared to Westar. SA and JA markers genes such as PR1 and PDF1.2 were more induced in Topas compared to Westar introgression lines at this time point. Even in the absence of any R gene, effect of Topas genotype in enhanced defense, was also evident by the induction of PDF1.2 that started at a low level at 3 dai and peaked at 6 and 9 dai, while no induction in Westar genotype was observed at any of these time points. Overall, variation in time and intensity of expression of genes related to defense, was clearly dependent on both R gene and the host genotype.


Assuntos
Ascomicetos , Brassica napus/genética , Brassica napus/microbiologia , Resistência à Doença/genética , Interações Hospedeiro-Patógeno/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Genes de Plantas , Patrimônio Genético , Marcadores Genéticos , Fenótipo , Estresse Fisiológico , Transcriptoma
5.
PLoS Genet ; 15(4): e1007954, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-31009456

RESUMO

One of the main outcomes of quantitative genetics approaches to natural variation is to reveal the genetic architecture underlying the phenotypic space. Complex genetic architectures are described as including numerous loci (or alleles) with small-effect and/or low-frequency in the populations, interactions with the genetic background, environment or age. Linkage or association mapping strategies will be more or less sensitive to this complexity, so that we still have an unclear picture of its extent. By combining high-throughput phenotyping under two environmental conditions with classical QTL mapping approaches in multiple Arabidopsis thaliana segregating populations as well as advanced near isogenic lines construction and survey, we have attempted to improve our understanding of quantitative phenotypic variation. Integrative traits such as those related to vegetative growth used in this work (highlighting either cumulative growth, growth rate or morphology) all showed complex and dynamic genetic architecture with respect to the segregating population and condition. The more resolutive our mapping approach, the more complexity we uncover, with several instances of QTLs visible in near isogenic lines but not detected with the initial QTL mapping, indicating that our phenotyping accuracy was less limiting than the mapping resolution with respect to the underlying genetic architecture. In an ultimate approach to resolve this complexity, we intensified our phenotyping effort to target specifically a 3Mb-region known to segregate for a major quantitative trait gene, using a series of selected lines recombined every 100kb. We discovered that at least 3 other independent QTLs had remained hidden in this region, some with trait- or condition-specific effects, or opposite allelic effects. If we were to extrapolate the figures obtained on this specific region in this particular cross to the genome- and species-scale, we would predict hundreds of causative loci of detectable phenotypic effect controlling these growth-related phenotypes.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Mapeamento Cromossômico , Cruzamentos Genéticos , Epistasia Genética , Variação Genética , Genoma de Planta , Endogamia , Herança Multifatorial , Fenótipo , Brotos de Planta/genética , Brotos de Planta/crescimento & desenvolvimento , Locos de Características Quantitativas , Recombinação Genética
6.
Mol Plant Microbe Interact ; 32(8): 1001-1012, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30938576

RESUMO

Our study investigated disease resistance in the Brassica napus-Leptosphaeria maculans pathosystem using a combination of laser microdissection, dual RNA sequencing, and physiological validations of large-scale gene sets. The use of laser microdissection improved pathogen detection and identified putative L. maculans effectors and lytic enzymes operative during host colonization. Within 24 h of inoculation, we detected large shifts in gene activity in resistant cotyledons associated with jasmonic acid and calcium signaling pathways that accelerated the plant defense response. Sequencing data were validated through the direct quantification of endogenous jasmonic acid levels. Additionally, resistance against L. maculans was abolished when the calcium chelator EGTA was applied to the inoculation site, providing physiological evidence of the role of calcium in B. napus immunity against L. maculans. We integrated gene expression data with all available information on cis-regulatory elements and transcription factor binding affinities to better understand the gene regulatory networks underpinning plant resistance to hemibiotrophic pathogens. These in silico analyses point to early cellular reprogramming during host immunity that are coordinated by CAMTA, BZIP, and bHLH transcription factors. Together, we provide compelling genetic and physiological evidence into the programming of plant resistance against fungal pathogens.


Assuntos
Ascomicetos , Brassica napus , Resistência à Doença , Interações Hospedeiro-Patógeno , Transcriptoma , Ascomicetos/fisiologia , Brassica napus/genética , Brassica napus/imunologia , Brassica napus/microbiologia , Resistência à Doença/genética , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia
7.
BMC Microbiol ; 18(1): 176, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30400851

RESUMO

BACKGROUND: Alternaria solani is a known air-born deuteromycete fungus with a polycyclic life cycle and is the causal agent of early blight that causes significant yield losses of potato worldwide. However, the molecular mechanisms underlying the conidiation and pathogenicity remain largely unknown. RESULTS: We produced a high-quality genome assembly of A. solani HWC-168 that was isolated from a major potato-producing region of Northern China, which facilitated a comprehensive gene annotation, the accurate prediction of genes encoding secreted proteins and identification of conidiation-related genes. The assembled genome of A. solani HWC-168 has a genome size 32.8 Mb and encodes 10,358 predicted genes that are highly similar with related Alternaria species including Alternaria arborescens and Alternaria brassicicola. We identified conidiation-related genes in the genome of A. solani HWC-168 by searching for sporulation-related homologues identified from Aspergillus nidulans. A total of 975 secreted protein-encoding genes, which might act as virulence factors, were identified in the genome of A. solani HWC-168. The predicted secretome of A. solani HWC-168 possesses 261 carbohydrate-active enzymes (CAZy), 119 proteins containing RxLx[EDQ] motif and 27 secreted proteins unique to A. solani. CONCLUSIONS: Our findings will facilitate the identification of conidiation- and virulence-related genes in the genome of A. solani. This will permit new insights into understanding the molecular mechanisms underlying the A. solani-potato pathosystem and will add value to the global fungal genome database.


Assuntos
Alternaria/genética , Alternaria/patogenicidade , Genoma Fúngico , Solanum tuberosum/microbiologia , Fatores de Virulência/genética , China , Mapeamento Cromossômico , Doenças das Plantas/microbiologia , Análise de Sequência de DNA , Virulência
8.
iScience ; 3: 177-191, 2018 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-30428318

RESUMO

Leptosphaeria maculans, the causal agent of blackleg disease in canola (Brassica napus), secretes an array of effectors into the host to overcome host defense. Here we present evidence that the L. maculans effector protein AvrLm1 functions as a virulence factor by interacting with the B. napus mitogen-activated protein (MAP) kinase 9 (BnMPK9), resulting in increased accumulation and enhanced phosphorylation of the host protein. Transient expression of BnMPK9 in Nicotiana benthamiana induces cell death, and this phenotype is enhanced in the presence of AvrLm1, suggesting that induction of cell death due to enhanced accumulation and phosphorylation of BnMPK9 by AvrLm1 supports the initiation of necrotrophic phase of L. maculans infection. Stable expression of BnMPK9 in B. napus perturbs hormone signaling, notably salicylic acid response genes, to facilitate L. maculans infection. Our findings provide evidence that a MAP kinase is directly targeted by a fungal effector to modulate plant immunity.

9.
PLoS One ; 13(6): e0198201, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29856883

RESUMO

Genes coding for nucleotide-binding leucine-rich repeat (LRR) receptors (NLRs) control resistance against intracellular (cell-penetrating) pathogens. However, evidence for a role of genes coding for proteins with LRR domains in resistance against extracellular (apoplastic) fungal pathogens is limited. Here, the distribution of genes coding for proteins with eLRR domains but lacking kinase domains was determined for the Brassica napus genome. Predictions of signal peptide and transmembrane regions divided these genes into 184 coding for receptor-like proteins (RLPs) and 121 coding for secreted proteins (SPs). Together with previously annotated NLRs, a total of 720 LRR genes were found. Leptosphaeria maculans-induced expression during a compatible interaction with cultivar Topas differed between RLP, SP and NLR gene families; NLR genes were induced relatively late, during the necrotrophic phase of pathogen colonization. Seven RLP, one SP and two NLR genes were found in Rlm1 and Rlm3/Rlm4/Rlm7/Rlm9 loci for resistance against L. maculans on chromosome A07 of B. napus. One NLR gene at the Rlm9 locus was positively selected, as was the RLP gene on chromosome A10 with LepR3 and Rlm2 alleles conferring resistance against L. maculans races with corresponding effectors AvrLm1 and AvrLm2, respectively. Known loci for resistance against L. maculans (extracellular hemi-biotrophic fungus), Sclerotinia sclerotiorum (necrotrophic fungus) and Plasmodiophora brassicae (intracellular, obligate biotrophic protist) were examined for presence of RLPs, SPs and NLRs in these regions. Whereas loci for resistance against P. brassicae were enriched for NLRs, no such signature was observed for the other pathogens. These findings demonstrate involvement of (i) NLR genes in resistance against the intracellular pathogen P. brassicae and a putative NLR gene in Rlm9-mediated resistance against the extracellular pathogen L. maculans.


Assuntos
Ascomicetos/fisiologia , Brassica napus/genética , Resistência à Doença/genética , Genes de Plantas , Genoma de Planta , Interações Hospedeiro-Parasita/genética , Doenças das Plantas/genética , Proteínas de Plantas/genética , Plasmodioforídeos/fisiologia , Proteínas/genética , Brassica napus/parasitologia , Estudo de Associação Genômica Ampla , Proteínas de Repetições Ricas em Leucina , Modelos Moleculares , Família Multigênica , Filogenia , Células Vegetais/microbiologia , Células Vegetais/parasitologia , Proteínas de Plantas/química , Proteínas de Plantas/fisiologia , Conformação Proteica , Proteínas/química , Proteínas/fisiologia , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
10.
Mol Plant Pathol ; 19(7): 1754-1764, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29330918

RESUMO

Blackleg disease of Brassica napus caused by Leptosphaeria maculans (Lm) is largely controlled by the deployment of race-specific resistance (R) genes. However, selection pressure exerted by R genes causes Lm to adapt and give rise to new virulent strains through mutation and deletion of effector genes. Therefore, a knowledge of effector gene function is necessary for the effective management of the disease. Here, we report the cloning of Lm effector AvrLm9 which is recognized by the resistance gene Rlm9 in B. napus cultivar Goéland. AvrLm9 was mapped to scaffold 7 of the Lm genome, co-segregating with the previously reported AvrLm5 (previously known as AvrLmJ1). Comparison of AvrLm5 alleles amongst the 37 re-sequenced Lm isolates and transgenic complementation identified a single point mutation correlating with the AvrLm9 phenotype. Therefore, we renamed this gene as AvrLm5-9 to reflect the dual specificity of this locus. Avrlm5-9 transgenic isolates were avirulent when inoculated on the B. napus cultivar Goéland. The expression of AvrLm5-9 during infection was monitored by RNA sequencing. The recognition of AvrLm5-9 by Rlm9 is masked in the presence of AvrLm4-7, another Lm effector. AvrLm5-9 and AvrLm4-7 do not interact, and AvrLm5-9 is expressed in the presence of AvrLm4-7. AvrLm5-9 is the second Lm effector for which host recognition is masked by AvrLm4-7. An understanding of this complex interaction will provide new opportunities for the engineering of broad-spectrum recognition.


Assuntos
Ascomicetos/patogenicidade , Brassica napus/metabolismo , Brassica napus/microbiologia , Doenças das Plantas/microbiologia , Brassica napus/genética , Resistência à Doença/genética , Resistência à Doença/fisiologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Doenças das Plantas/imunologia
11.
BMC Genomics ; 17: 272, 2016 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-27036196

RESUMO

BACKGROUND: The protist Plasmodiophora brassicae is a soil-borne pathogen of cruciferous species and the causal agent of clubroot disease of Brassicas including agriculturally important crops such as canola/rapeseed (Brassica napus). P. brassicae has remained an enigmatic plant pathogen and is a rare example of an obligate biotroph that resides entirely inside the host plant cell. The pathogen is the cause of severe yield losses and can render infested fields unsuitable for Brassica crop growth due to the persistence of resting spores in the soil for up to 20 years. RESULTS: To provide insight into the biology of the pathogen and its interaction with its primary host B. napus, we produced a draft genome of P. brassicae pathotypes 3 and 6 (Pb3 and Pb6) that differ in their host range. Pb3 is highly virulent on B. napus (but also infects other Brassica species) while Pb6 infects only vegetable Brassica crops. Both the Pb3 and Pb6 genomes are highly compact, each with a total size of 24.2 Mb, and contain less than 2 % repetitive DNA. Clustering of genome-wide single nucleotide polymorphisms (SNP) of Pb3, Pb6 and three additional re-sequenced pathotypes (Pb2, Pb5 and Pb8) shows a high degree of correlation of cluster grouping with host range. The Pb3 genome features significant reduction of intergenic space with multiple examples of overlapping untranslated regions (UTRs). Dependency on the host for essential nutrients is evident from the loss of genes for the biosynthesis of thiamine and some amino acids and the presence of a wide range of transport proteins, including some unique to P. brassicae. The annotated genes of Pb3 include those with a potential role in the regulation of the plant growth hormones cytokinin and auxin. The expression profile of Pb3 genes, including putative effectors, during infection and their potential role in manipulation of host defence is discussed. CONCLUSION: The P. brassicae genome sequence reveals a compact genome, a dependency of the pathogen on its host for some essential nutrients and a potential role in the regulation of host plant cytokinin and auxin. Genome annotation supported by RNA sequencing reveals significant reduction in intergenic space which, in addition to low repeat content, has likely contributed to the P. brassicae compact genome.


Assuntos
Brassica/parasitologia , Genoma de Protozoário , Interações Hospedeiro-Parasita/genética , Plasmodioforídeos/genética , Arabidopsis , Produtos Agrícolas/parasitologia , Citocininas/metabolismo , DNA de Protozoário/genética , Especificidade de Hospedeiro , Ácidos Indolacéticos/metabolismo , Doenças das Plantas/parasitologia , Análise de Sequência de RNA , Transcriptoma
12.
Mol Plant Pathol ; 17(8): 1196-210, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-26679637

RESUMO

Molecular interaction between the causal agent of blackleg disease, Leptosphaeria maculans (Lm), and its host, Brassica napus, is largely unknown. We applied a deep RNA-sequencing approach to gain insight into the pathogenicity mechanisms of Lm and the defence response of B. napus. RNA from the infected susceptible B. napus cultivar Topas DH16516, sampled at 2-day intervals (0-8 days), was sequenced and used for gene expression profiling. Patterns of gene expression regulation in B. napus showed multifaceted defence responses evident by the differential expression of genes encoding the pattern recognition receptor CERK1 (chitin elicitor receptor kinase 1), receptor like proteins and WRKY transcription factors. The up-regulation of genes related to salicylic acid and jasmonic acid at the initial and late stages of infection, respectively, provided evidence for the biotrophic and necrotrophic life stages of Lm during the infection of B. napus cotyledons. Lm transition from biotrophy to necrotropy was also supported by the expression function of Lm necrosis and ethylene-inducing (Nep-1)-like peptide. Genes encoding polyketide synthases and non-ribosomal peptide synthetases, with potential roles in pathogenicity, were up-regulated at 6-8 days after inoculation. Among other plant defence-related genes differentially regulated in response to Lm infection were genes involved in the reinforcement of the cell wall and the production of glucosinolates. Dual RNA-sequencing allowed us to define the Lm candidate effectors expressed during the infection of B. napus. Several candidate effectors suppressed Bax-induced cell death when transiently expressed in Nicotiana benthamaina leaves.


Assuntos
Ascomicetos/crescimento & desenvolvimento , Brassica napus/genética , Brassica napus/microbiologia , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Plântula/genética , Plântula/microbiologia , Bioensaio , Brassica napus/imunologia , Morte Celular , Cotilédone/genética , Cotilédone/microbiologia , Ciclopentanos/metabolismo , Modelos Biológicos , Oxilipinas/metabolismo , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Reguladores de Crescimento de Plantas/metabolismo , Ácido Salicílico/metabolismo , Análise de Sequência de RNA , Proteína X Associada a bcl-2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...